Harnessing the power of machine learning to empower clinicians with accurate and timely identification of lung abnormalities in chest X-rays. 

Project Budget*- $2.8M

Partner Co-investment - $0.8M

Supercluster Co-investment - $2.0M

Project Partners

Project Overview

In the fight against COVID-19, chest X-rays have been a critical tool for identifying lung abnormalities in patients, a critical complication from COVID-19. Chest X-rays can show the signs of COVID-19 infection in the lungs in multiple ways, such as partially collapsed lungs, blocked bronchial tubes, and liquid collecting in the lungs or their outer lining. The information is key for family doctors, emergency doctors, and nurses trying to determine if a patient could be infected.  

The challenges faced by front-line teams trying to detect and treat COVID-19 include the time it takes to receive a formal report from a radiologist, along with the accurate identification of abnormalities in the lung. Often the treatment teams rely on their own interpretation of an X-ray to manage a patient while waiting for a radiologist’s report, if they have access to one. These interpretations drive clinical decisions, including the decision to admit or discharge a patient.  A late or incorrect diagnosis could see an infectious patient sent home, risking further spreading the disease or a rapid deterioration in their condition. 

 XrAI is an AI-driven chest X-ray tool developed by 1QBit in close partnership with Canadian health care organizations and physicians. XrAI has been approved by Health Canada as a Class III medical device to support Canadian health providers in the fight against COVID-19. This software is ready to be deployed across Canada through the project team led by 1QBit in partnership with Saskatchewan Health, British Columbia’s Fraser Health, Vancouver Coastal Health, and First Nations Health authorities, Ontario’s Trillium Health Partners, The Red Cross, and Microsoft. 

XrAI integrates seamlessly into existing clinical information systems. There are no interruptions to workflow and little to no training required upon installation. XrAI’s analysis empowers the front-line health care provider’s decision making and diagnostic accuracy by rapidly delivering its AI-driven findings and the level of confidence in the provided results directly to the clinician’s standard X-ray viewer.  

The technology already has proven success. It has been tested on publicly available data of COVID-19 pneumonia and it correctly identified 100% of the cases presenting abnormalities in the lungs. Furthermore, in a randomized control trial, the solution improved the accuracy of identifying a myriad of other lung abnormalities across a variety of physician groups. 

Chest X-rays are already performed in 35% of visits to the ER – and COVID-19 is driving usage higher. By speeding up the analysis of the X-rays, XrAI will help reduce radiology bottlenecks and will be especially valuable for rural and remote ERs and doctors. 

Many lessons will be learned from the deployment of XrAI, and many of the work protocols used before COVID-19 will be changed forever. The empowered decision making by clinicians using XrAI as a co-pilot will help the health system deliver better outcomes during this pandemic, and across all areas of care related to accurately identifying lung abnormalities. 

*As of September 30, contracted amounts.

Get Involved

There are two ways that your organization can join the Supercluster and start to get involved in collaborative projects designed to build world class digital technologies while growing our ecosystem and capacity as we become a world leader in the digital transformation of our economies and our society.